详细内容
医疗领域
放射性同位素:铟 - 111 是一种重要的放射性同位素,广泛用于医学影像和病灶定位,结合靶向后,可定位肿瘤组织。
应用:铟化合物具有优异的性能,特别适用于医用器械涂层,显著降低感染风险。
平板显示与触控技术
ITO 靶材(氧化铟锡):
铟的消费领域是生产 ITO 靶材,占全球铟消费量的 70% 左右。ITO(氧化铟锡)是一种透明导电材料,用于制造液晶显示器(LCD)、有机发光二极管(OLED)、等离子电视(PDP)和触摸屏的电极。
原理:ITO 薄膜兼具高透光率和导电性,使屏幕能实现显示和触控功能。
应用场景:智能手机、平板电脑、电视、电脑显示器等。
柔性电子器件:
铟的延展性和导电性使其适用于柔性电路板(FPC)和可穿戴设备(如智能手表、柔性屏)的透明电极制造。
铟的应用高度依赖其高导电性、透明性、低熔点、耐腐蚀性和独特的核物理性质,尤其在电子信息和新能源领域不可替代。随着 5G、新能源汽车、量子计算等技术的发展,铟的战略地位将进一步提升。然而,铟资源稀缺(全球储量约 5 万吨,主要伴生于锌矿),需关注可持续开采和回收利用(如从废旧显示屏中提取铟)。
精铟的制备方法
精铟通常以粗铟(纯度约 95%~99%,来源于锌矿冶炼副产物)为原料,通过多级提纯工艺获得:
电解精炼
将粗铟作为阳极,纯铟片作为阴极,在硫酸或氯化物电解液中通电,杂质(如锌、铅)沉积为阳极泥,铟离子迁移至阴极形成纯度约 99.95% 的电解铟。
真空蒸馏
在高真空(10⁻³~10⁻⁴ Pa)和高温(500~1000℃)下,利用铟与杂质(如镉、锡)的蒸气压差异分离,纯度可提升至 99.99%~99.999%。
区域熔炼
通过移动加热线圈使铟棒局部熔融,杂质随固液界面移动富集到末端,重复操作后纯度可达 99.9999%(6N)以上。
化学提纯
利用萃取(如用有机膦酸萃取铟)、离子交换或深度结晶等方法进一步去除微量杂质。